keras
- Version:
2.3.1
- Category:
ai
- Cluster:
Loki
Description
Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It allows fast experimentation and supports both convolutional and recurrent networks, as well as combinations of the two.
Key features:
User-friendly and modular
Seamless integration with TensorFlow backend
GPU acceleration via CUDA
Supports multi-GPU and distributed training
Suited for both research and production environments
Documentation
$ python -m keras --help
usage: keras [-h] {train,test,predict} ...
Keras command-line interface is minimal by default.
Most workflows are run as Python scripts importing keras models:
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5, batch_size=32)
Full documentation: https://keras.io/
Examples/Usage
Load the Keras module:
$ module load ai/keras-py37-cuda10.2-gcc/2.3.1
Unload the module:
$ module unload ai/keras-py37-cuda10.2-gcc/2.3.1
Use Keras in a Python script:
import keras from keras.models import Sequential from keras.layers import Dense model = Sequential() model.add(Dense(128, activation='relu', input_shape=(784,))) model.add(Dense(10, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) print(model.summary())
Installation
Source code is obtained from Keras GitHub