DEXSeq
- Version:
1.4
- Category:
bio
- Cluster:
Loki
Description
DEXSeq is a Bioconductor package for differential exon usage analysis in RNA-Seq datasets. It allows researchers to detect changes in exon usage that may result from alternative splicing events, even in the absence of differential gene expression.
Key features:
Exon-level statistical modeling using generalized linear models
Supports visualization of exon usage and normalized counts
Works with standard alignment outputs (BAM/GTF)
Compatible with workflows using HTSeq and DESeq2
DEXSeq is particularly useful for studying transcriptome complexity and alternative splicing across experimental conditions.
Documentation
DEXSeq is an R/Bioconductor package and is used within the R environment.
To load DEXSeq in R:
library(DEXSeq)
To see help:
?DEXSeq
browseVignettes("DEXSeq")
Example command:
dxd <- DEXSeqDataSetFromHTSeq(countFiles, design, flattenedFile)
dxd <- estimateSizeFactors(dxd)
dxd <- estimateDispersions(dxd)
dxd <- testForDEU(dxd)
dxd <- estimateExonFoldChanges(dxd, fitExpToVar="condition")
results <- DEXSeqResults(dxd)
Official vignette:
https://bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/DEXSeq.html
Examples/Usage
Load the DEXSeq module:
$ module load bio/dexseq/1.40
Start an R session and load the package:
library(DEXSeq)
Access the DEXSeq vignette:
browseVignettes("DEXSeq")
Typical workflow (in R):
dxd <- DEXSeqDataSetFromHTSeq(countFiles, sampleData, design= ~ sample + exon + condition:exon)
dxd <- estimateSizeFactors(dxd)
dxd <- estimateDispersions(dxd)
dxd <- testForDEU(dxd)
dxd <- estimateExonFoldChanges(dxd, fitExpToVar="condition")
results <- DEXSeqResults(dxd)
Unload the module:
$ module unload bio/dexseq/1.40